Major Havoc

Troubleshooting Guide

ATARI®
A Warner Communications Company
Table of Contents

Troubleshooting the Alpha Microprocessor-Controlled Circuits 1
 Preliminary Procedure .. 1
 Troubleshooting the Alpha Address Lines 1
 Troubleshooting the Alpha Data Lines 1
 Troubleshooting the Alpha Program RAM 2
 Troubleshooting with Checksums 2

Troubleshooting the Gamma Microprocessor-Controlled Circuits 3
 Preliminary Procedure .. 3
 Troubleshooting the Gamma Address Lines 3
 Troubleshooting the Gamma Data Lines 4
 Troubleshooting the Gamma Program RAM 4
 Troubleshooting with Checksums 4
 Troubleshooting the Option Switch Inputs 5

Signature Analysis .. 5

List of Tables

Table 1 Alpha Address Lines .. 1
Table 2 Alpha Data Lines ... 2
Table 3 Alpha ROM Checksums .. 2
Table 4 Alpha ROM Checksum ... 2
Table 5 Alpha RAM Data Retention 3
Table 6 Alpha ROM Checksums .. 3
Table 7 Gamma Address Lines .. 4
Table 8 Gamma Data Lines .. 4
Table 9 Gamma ROM Checksums .. 5
Table 10 Option Switch Inputs ... 5
Troubleshooting with the CAT Box

Troubleshooting the Alpha Microprocessor-Controlled Circuits

Preliminary Procedure
1. Turn off the electrical power to the game.
2. Remove the Main PCB assembly from the game.
3. Connect an extension harness from the game harness to the Main PCB edge connectors.
4. Connect a jumper from pin 12 of IC 3Q to the PHASE 2A test point.
5. Connect a jumper from the WDDIS test point to ground.
6. Connect the CAT Box 50-pin cable to the 6502 interface and the 40 pin cable from the Interface to the Main PCB as described on the label attached to the interface cover.
7. Remove the 6502B microprocessor from its socket at location 2S.
8. Insert the Interface 40-pin IC connector into the empty 6502B microprocessor socket. Make sure the Interface IC connector pin numbers match with the same pin numbers on the empty microprocessor socket.
9. Apply power to the game and to the CAT Box.
10. Set the CAT Box switches as follows:
 a. TESTER SELF-TEST OFF
 b. TESTER MODE RW

Troubleshooting the Alpha Address Lines
1. Perform the Preliminary Procedure under Troubleshooting the Alpha Microprocessor-Controlled Circuits.
2. Connect the Data Probe to the CAT Box.
3. Connect the Data Probe ground clip to a GND test point on the Main PCB.
4. Set the CAT Box switches as follows:
 a. BYTES 1
 b. PULSE MODE UNLATCHED
 c. R/W MODE (OFF)
 d. R/W WRITE
5. Enter address AAAA with the CAT Box keyboard.
6. Press the DATA SET pushbutton.
7. Enter data AA with the CAT Box keyboard.
8. Set the R/W MODE switch to STATIC.
9. Check the IC pin listed in Table 1 with the Data Probe and verify that the corresponding 1 or 0 LED on the CAT Box is lit.
10. Repeat steps 4b through 9 using address 5555 in step 5 and data 55 in step 7.

Table 1 Alpha Address Lines

<table>
<thead>
<tr>
<th>Address</th>
<th>Logic State for Address AAAA</th>
<th>IC-Pin</th>
<th>Logic State for Address AAAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15a</td>
<td>1</td>
<td>4L-3</td>
<td>0</td>
</tr>
<tr>
<td>A14a</td>
<td>0</td>
<td>4L-2</td>
<td>1</td>
</tr>
<tr>
<td>BA13a</td>
<td>1</td>
<td>2P-14</td>
<td>0</td>
</tr>
<tr>
<td>BA12a</td>
<td>0</td>
<td>2P-12</td>
<td>1</td>
</tr>
<tr>
<td>BA11a</td>
<td>1</td>
<td>2P-9</td>
<td>0</td>
</tr>
<tr>
<td>BA10a</td>
<td>0</td>
<td>2P-7</td>
<td>1</td>
</tr>
<tr>
<td>BA9a</td>
<td>1</td>
<td>2P-5</td>
<td>0</td>
</tr>
<tr>
<td>BA8a</td>
<td>0</td>
<td>2P-3</td>
<td>1</td>
</tr>
<tr>
<td>BA7a</td>
<td>1</td>
<td>2Q-18</td>
<td>0</td>
</tr>
<tr>
<td>BA6a</td>
<td>0</td>
<td>2Q-16</td>
<td>1</td>
</tr>
<tr>
<td>BA5a</td>
<td>1</td>
<td>2Q-14</td>
<td>0</td>
</tr>
<tr>
<td>BA4a</td>
<td>0</td>
<td>2Q-12</td>
<td>1</td>
</tr>
<tr>
<td>BA3a</td>
<td>1</td>
<td>2Q-9</td>
<td>0</td>
</tr>
<tr>
<td>BA2a</td>
<td>0</td>
<td>2Q-7</td>
<td>1</td>
</tr>
<tr>
<td>BA1a</td>
<td>1</td>
<td>2Q-5</td>
<td>0</td>
</tr>
<tr>
<td>BA0a</td>
<td>0</td>
<td>2Q-3</td>
<td>1</td>
</tr>
</tbody>
</table>

Troubleshooting the Alpha Data Lines
1. Perform the Preliminary Procedure under Troubleshooting the Alpha Microprocessor-Controlled Circuits.
2. Connect the Data Probe to the CAT Box.
3. Connect the Data Probe ground clip to a GND test point on the Main PCB.
4. Set the CAT Box switches as follows:
 a. BYTES 1
 b. R/W MODE (OFF)
 c. R/W WRITE
5. Enter address 0000 with the CAT Box keyboard.
6. Press the DATA SET pushbutton.
7. Enter data AA with the CAT Box keyboard.
8. Set the R/W MODE switch to PULSE and then to STATIC.
9. Check the IC pin listed in Table 2 with the Data Probe and verify that the 1 or 0 LED on the CAT Box is lit.
10. Repeat steps 4b through 9 using data 55 in step 7.
Table 2 Alpha Data Lines

<table>
<thead>
<tr>
<th>Data Line</th>
<th>Logic State for Data AA</th>
<th>3R-18</th>
<th>Logic State for Data 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7a</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6a</td>
<td>0</td>
<td>3R-17</td>
<td></td>
</tr>
<tr>
<td>D5a</td>
<td>1</td>
<td>3R-16</td>
<td></td>
</tr>
<tr>
<td>D4a</td>
<td>0</td>
<td>3R-15</td>
<td></td>
</tr>
<tr>
<td>D3a</td>
<td>1</td>
<td>3R-14</td>
<td></td>
</tr>
<tr>
<td>D2a</td>
<td>0</td>
<td>3R-13</td>
<td></td>
</tr>
<tr>
<td>D1a</td>
<td>1</td>
<td>3R-12</td>
<td></td>
</tr>
<tr>
<td>D0a</td>
<td>0</td>
<td>3R-11</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting the Alpha Program RAM

1. Perform the Preliminary Procedure under Troubleshooting the Alpha Microprocessor-Controlled Circuits.
2. Set the CAT Box switches as follows:
 a. DBUS SOURCE
 b. BYTES
 c. R/W MODE
 d. R/W

3. Enter address 0000 with the CAT Box keyboard.
4. Set the R/W MODE switch to PULSE and back to (OFF).
5. Set the R/W switch to READ.
6. Set the R/W MODE switch to PULSE and back to (OFF).
7. The Program RAM is a 2K × 8 device. To test the entire device perform steps 2e through 6 with the address in step 3 at 0400.
8. If the CAT Box reads an address that does not match that entered in step 3, the COMPARE ERROR LED will light.

Troubleshooting with Checksums

NOTE
This procedure can only be done with those CAT Boxes equipped with a Checksum switch.

1. Perform the Preliminary Procedure under Troubleshooting the Alpha Microprocessor-Controlled Circuits.
2. Set the CAT Box switches as follows:
 a. BYTES
 b. DBUS SOURCE
 c. R/W MODE
 d. R/W
 e. Checksum Switch

3. Enter the address given in Table 3 with the CAT Box keyboard.
4. Set the R/W MODE switch to PULSE and then back to (OFF).
5. Check the CAT Box ADDRESS/SIGNATURE readout for the appropriate checksum listed in Table 3.
6. Repeat steps 3 through 5 for each address listed in Table 3.

Table 3 Alpha ROM Checksums

<table>
<thead>
<tr>
<th>ROM Tested</th>
<th>Location</th>
<th>Address</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>3R6025-103</td>
<td>1M/N</td>
<td>8000</td>
<td>2950</td>
</tr>
<tr>
<td>3R6025-104</td>
<td>1M/N</td>
<td>0000</td>
<td>F368</td>
</tr>
<tr>
<td>3R6025-101</td>
<td>1L</td>
<td>0000</td>
<td>6637</td>
</tr>
<tr>
<td>3R6025-101</td>
<td>1L</td>
<td>0000</td>
<td>3043</td>
</tr>
<tr>
<td>3R6025-109</td>
<td>1Q</td>
<td>2000</td>
<td>3A39</td>
</tr>
<tr>
<td>3R6025-109</td>
<td>1Q</td>
<td>2000</td>
<td>C09C</td>
</tr>
<tr>
<td>3R6025-109</td>
<td>1P</td>
<td>2000</td>
<td>D559</td>
</tr>
<tr>
<td>3R6025-109</td>
<td>1P</td>
<td>2000</td>
<td>9E1E</td>
</tr>
</tbody>
</table>

1. If this checksum is unstable or does not verify, connect one 220-ohm resistor from pin 2 and one from pin 3 of the same circuit 4 to +5 volts. Then, connect one 330-ohm resistor from each of the same pins to ground. Remove the resistors after the checksum troubleshooting is completed.
2. MMU PAGE 0 must be low if not, ground the RESET A test point on the Main PCB.
3. MMU PAGE 0 must be high. If not, use the CAT Box to write the following data to address 1740: 01.
4. MMU PAGE 0 must be high. If not, use the CAT Box to write the following data to address 1740: 02.
5. MMU PAGE 0 must be high. If not, use the CAT Box to write the following data to address 1740: 03.

7. Connect a jumper from pin 6 of IC 3F to ground.
8. Set CAT Box BYTES switch to 256.
9. Check the CAT Box ADDRESS/SIGNATURE readout for the appropriate checksum listed in Table 4.

Table 4 Alpha ROM Checksums

<table>
<thead>
<tr>
<th>ROM Tested</th>
<th>Location</th>
<th>Address</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>3R6025-110</td>
<td>6K/L</td>
<td>5000</td>
<td>5316</td>
</tr>
</tbody>
</table>

10. Set the CAT Box BYTES switch to 1.
11. Enter the address given in Table 5 with the CAT Box keyboard.
12. Press the DATA SET pushbutton.
13. Enter the data given in Table 5 with the CAT Box keyboard.
14. Set the R/W MODE switch to PULSE and then to (OFF).
15. Set the \(R/W \) switch to READ.
16. Enter the address given in Table 5.
17. Set the \(R/W \) MODE switch to STATIC and then to (OFF).
18. Check the CAT Box DATA readout for the same data entered in step 13.
19. Repeat steps 11 through 18 for each address and data given in Table 5.

<table>
<thead>
<tr>
<th>Table 5 Alpha RAM Data Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>4000</td>
</tr>
<tr>
<td>4001</td>
</tr>
<tr>
<td>4002</td>
</tr>
<tr>
<td>4003</td>
</tr>
</tbody>
</table>

20. Set the \(R/W \) switch to WRITE.
21. Remove the jumper from pin 6 of IC 3F.
22. Enter address 1640 with the CAT Box keyboard.
23. Press the DATA SET pushbutton and enter data FF with the CAT Box keyboard.
24. Set the \(R/W \) MODE switch to PULSE then back to (OFF).
25. Replace the jumper from pin 6 of IC 3F to ground.
26. Enter address 4001 with the CAT Box keyboard.
27. Press the DATA SET pushbutton.
28. Enter the appropriate data at address 4001 given in Table 6 with the CAT Box keyboard.
29. Set the \(R/W \) MODE switch to PULSE then back to (OFF).
30. Set the BYTES switch to 1024.
31. Set the \(R/W \) switch to READ.
32. Enter address 6000 with the CAT Box keyboard.
33. Set the \(R/W \) MODE switch to PULSE then back to (OFF).
34. Check the CAT Box ADDRESS/SIGNATURE readout for the appropriate checksums given in Table 6.
35. Set the BYTES switch to 1 and repeat step 20 through 32 to verify the checksums given in Table 6.

<table>
<thead>
<tr>
<th>Table 6 Alpha ROM Checksums</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM Tested</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>136025-106</td>
</tr>
<tr>
<td>136025-107</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting the Gamma Microprocessor-Controlled Circuits

Preliminary Procedure

1. Turn off the electrical power to the game.
2. Remove the Main PCB assembly from the game.
3. Connect an extension harness from the game harness to the Main PCB edge connectors.
4. Connect the CAT Box 50-pin cable to the 6502 Interface and the 40-pin cable from the Interface to the Main PCB as described on the label attached to the Interface cover.
5. Remove the 6502A microprocessor from its socket at location 8F.
6. Insert the Interface 40-pin IC connector into the empty 6502A microprocessor socket. Make sure the Interface IC connector pin numbers mate with the same pin numbers on the empty microprocessor socket.
7. Connect a jumper from the PHASE 2 test point to the 1.25M test point on the Main PCB.
8. Apply power to the game and to the CAT Box.
9. Set the CAT Box switches as follows:
 a. TESTER SELFTEST OFF
 b. TESTER MODE R/W
10. Press the TESTER RESET pushbutton.

Troubleshooting the Gamma Address Lines

1. Perform the Preliminary Procedure under Troubleshooting the Gamma Microprocessor-Controlled Circuits.
2. Connect the Data Probe to the CAT Box.
3. Connect the Data Probe ground clip to a GND test point on the Main PCB.
4. Set the CAT Box switches as follows:
 a. BYTES 1
 b. PULSE MODE UNLATCHED
 c. \(R/W \) MODE (OFF)
 d. \(R/W \) WRITE
5. Enter address AAAA with the CAT Box keyboard.
6. Press the DATA SET pushbutton.
7. Enter data AA with the CAT Box keyboard.
8. Set the \(R/W \) MODE switch to STATIC.
9. Check the IC pins listed in Table 7 with the Data Probe and verify that the corresponding 1 or 0 LED on the CAT Box is lit.
10. Repeat steps 4 through 9 using address 5555 in step 5 and data 55 in step 7.
Table 7 Gamma Address Lines

<table>
<thead>
<tr>
<th>Address</th>
<th>Logic State for Address AAAA</th>
<th>IC-Pin</th>
<th>Logic State for Address 5555</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15γ</td>
<td>1</td>
<td>8R-15</td>
<td>0</td>
</tr>
<tr>
<td>A14γ</td>
<td>0</td>
<td>8R-13</td>
<td>1</td>
</tr>
<tr>
<td>A13γ</td>
<td>1</td>
<td>8R-14</td>
<td>0</td>
</tr>
<tr>
<td>A12γ</td>
<td>0</td>
<td>95-2</td>
<td>1</td>
</tr>
<tr>
<td>A11γ</td>
<td>1</td>
<td>95-23</td>
<td>0</td>
</tr>
<tr>
<td>A10γ</td>
<td>0</td>
<td>95-21</td>
<td>1</td>
</tr>
<tr>
<td>A9γ</td>
<td>1</td>
<td>95-24</td>
<td>0</td>
</tr>
<tr>
<td>A8γ</td>
<td>0</td>
<td>95-25</td>
<td>1</td>
</tr>
<tr>
<td>A7γ</td>
<td>1</td>
<td>95-3</td>
<td>0</td>
</tr>
<tr>
<td>A6γ</td>
<td>0</td>
<td>95-4</td>
<td>1</td>
</tr>
<tr>
<td>A5γ</td>
<td>1</td>
<td>95-5</td>
<td>0</td>
</tr>
<tr>
<td>A4γ</td>
<td>0</td>
<td>95-6</td>
<td>1</td>
</tr>
<tr>
<td>A3γ</td>
<td>1</td>
<td>95-7</td>
<td>0</td>
</tr>
<tr>
<td>A2γ</td>
<td>0</td>
<td>95-8</td>
<td>1</td>
</tr>
<tr>
<td>A1γ</td>
<td>1</td>
<td>95-9</td>
<td>0</td>
</tr>
<tr>
<td>A0γ</td>
<td>0</td>
<td>95-10</td>
<td>1</td>
</tr>
</tbody>
</table>

Troubleshooting the Gamma Data Lines

1. Perform the Preliminary Procedure under Troubleshooting the Gamma Microprocessor-Controlled Circuits.

2. Connect the Data Probe to the CAT Box.

3. Connect the Data Probe ground clip to a GND test point on the Main PCB.

4. Set the CAT Box switches as follows:
 a. BYTES
 b. R/W (OFF)
 c. R/W WRITE

5. Enter address 0000 with the CAT Box keyboard.

6. Press the DATA SET pushbutton.

7. Enter data AA with the CAT Box keyboard.

8. Set the R/W MODE switch to PULSE and then to STATIC.

9. Check the IC pin listed in Table 8 with the Data Probe and verify that the 1 or 0 LED on the CAT Box is lit.

Table 8 Gamma Data Lines

<table>
<thead>
<tr>
<th>Data Line</th>
<th>Logic State for Data AA</th>
<th>IC-Pin</th>
<th>Logic State for Data 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7γ</td>
<td>1</td>
<td>12Q-18</td>
<td>0</td>
</tr>
<tr>
<td>D6γ</td>
<td>0</td>
<td>12Q-17</td>
<td>1</td>
</tr>
<tr>
<td>D5γ</td>
<td>1</td>
<td>12Q-16</td>
<td>0</td>
</tr>
<tr>
<td>D4γ</td>
<td>0</td>
<td>12Q-15</td>
<td>1</td>
</tr>
<tr>
<td>D3γ</td>
<td>1</td>
<td>12Q-14</td>
<td>0</td>
</tr>
<tr>
<td>D2γ</td>
<td>0</td>
<td>12Q-13</td>
<td>1</td>
</tr>
<tr>
<td>D1γ</td>
<td>1</td>
<td>12Q-12</td>
<td>0</td>
</tr>
<tr>
<td>D0γ</td>
<td>0</td>
<td>12Q-11</td>
<td>1</td>
</tr>
</tbody>
</table>

Troubleshooting the Gamma Program RAM

1. Perform the Preliminary Procedure under Troubleshooting the Gamma Microprocessor-Controlled Circuits.

2. Set the CAT Box switches as follows:
 a. DBUS SOURCE ADDR
 b. BYTES 1024
 c. R/W MODE (OFF)
 d. R/W WRITE

3. Enter address 0000 with the CAT Box keyboard.

4. Set the R/W MODE switch to PULSE and back to (OFF).

5. Set the R/W switch to READ.

6. Set the R/W MODE switch to PULSE and back to (OFF).

7. The Program RAM is a 2K x 8 device. To test the entire device perform steps 3 through 6 with the address in step 3 at 0400.

8. If the CAT Box reads an address that does not match that entered in step 3, the COMPARE ERROR LED will light.

Troubleshooting with Checksums

NOTE

This procedure can only be done with those CAT Boxes equipped with a Checksum switch.

1. Perform the Preliminary Procedure under Troubleshooting the Gamma Microprocessor-Controlled Circuits.

2. Set the CAT Box switches as follows:
 a. BYTES 1024
 b. DBUS SOURCE DATA
 c. R/W(not) MODE (OFF)
 d. R/W(not) READ on
 e. Checksum Switch

3. Enter the address given in Table 9.

4. Set the R/W MODE switch to PULSE and then back to (OFF).

5. Check the CAT Box ADDRESS/SIGNATURE readout for the appropriate checksum listed in Table 9.

6. Repeat steps 3 through 5 for each address listed in Table 9.
Table 9 Gamma ROM Checksums

<table>
<thead>
<tr>
<th>ROM Tested</th>
<th>Location</th>
<th>Address</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>136025-108</td>
<td>95</td>
<td>8000</td>
<td>1FE3</td>
</tr>
<tr>
<td>95</td>
<td>A000</td>
<td>C63F</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting the Option Switch Inputs

1. Perform the Preliminary Procedure under Troubleshooting the Gamma Microprocessor-Controlled Circuits.

2. Set the CAT Box switches as follows:
 a. **BYTES**
 b. **R/W**
 c. **R/W MODE**

3. Enter the address listed in Table 10 with the CAT Box keyboard.

4. Set the **R/W MODE** switch to STATIC.

5. Activate the input switch listed in Table 10.

6. Check the CAT Box DATA readout for the appropriate test result specified in Table 10.

7. Repeat steps 2c through 6 for each address given in Table 10.

Table 10 Option Switch Inputs

<table>
<thead>
<tr>
<th>Address</th>
<th>Input Switches</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>2800</td>
<td>FIRE/SHEILD</td>
<td>DATA readout changes when either of these switches is activated.</td>
</tr>
<tr>
<td>3800</td>
<td>Roller Control</td>
<td>DATA readout changes when roller control is spun in either direction.</td>
</tr>
<tr>
<td>4000</td>
<td>Option switch at location 85</td>
<td>DATA readout changes when any of these switches are activated.</td>
</tr>
</tbody>
</table>

If the preceding procedures for troubleshooting the alpha and gamma microprocessor-controlled circuits are successful, then there should be enough of the game circuitry working to perform the Self-Test procedures.

Signature Analysis
The software necessary to perform signature analysis is not available in this game.